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SUMMARY 

A new method for solving the linearized equations of motion is presented in this paper, which is the 
implementation of an outstanding idea suggested by Welander: a transport approach to the convolution method. 
The present work focuses on the case of constant eddy viscosity and constant density but can be easily extended to 
the case of arbitrary but time-invariant eddy viscosity or density structure. As two of the three equations of motion 
are solved analytically and the main numerical ‘do-loop’ only updates the sea level and the transport, the method 
features succinctness and fast convergence. 

The method is tested in Heaps’ basin and the results are compared with Heaps’ results for the transient state and 
with analytical solutions for the steady state. The comparison yields satisfactory agreement. The computational 
advantage of the method compared with Heaps’ spectral method and Jelesnianski’s bottom stress method is 
analysed and illustrated with examples. 

Attention is also paid to the recent efforts made in the spectral method to accelerate the convergence of the 
velocity profile. This study suggests that an efficient way to accelerate the convergence is to extract both the wind- 
induced surface Ekman spiral and the pressure-induced bottom Ekman spiral as a prespecified part of the profile. 

The present work also provides a direct way to find the eigenfunctions for arbitrary eddy viscosity profile. In 
addition, mode-truncated errors are analysed and tabulated as functions of mode number and the ratio of the 
Ekman depth to the water depth, which allows a determination of a proper mode number given an error tolerance. 

KEY WORDS transport approach; convolution method; linearized 3D circulation; shallow water equations 

1. INTRODUCTION 

The set of linearized equations 

where x-y-z forms a right-handed Cartesian co-ordinate system, t is time, u and v are the velocity 
components in the x- and y-directions respectively, q is the sea surface elevation, f is the Coriolis 
parameter, u is the eddy viscosity and g is the gravitational acceleration, has often been used as a 
mathematical model for tidal flow, storm surge prediction, shelf circulation, etc. The set, however, 
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rarely has a full (-f(t,  x, y, z)) analytical solution, even for very simple basins. Although it has been 
greatly simplified from the full Navier-Stokes equations, it still includes a mixture of Ekman dynamics 
and long-wave dynamics. Therefore it is necessary to take a numerical approach to obtain general 
solutions. 

However, before integrating the equations numerically, we may be able to extract the Ekman 
dynamics analytically. This is actually an idea proposed by Welander. ’ Specifically, he suggested that 
the two momentum equations can be solved for a complex velocity q = u + iv in terms of a known 
wind stress z and an unknown sea surface slope, Vq: 

As we will see later, equation (2) can be written in the form of a pair of time convolutions. One 
convolves the wind forcing with a wind response kernel and the other convolves the slope forcing with 
a pressure response kernel. In practice the wind stress is given. If the slope forcing were given, then the 
knowledge of the velocity field would be complete. To get Vdt), Welander’ suggested two approaches 
(Table I). One is to take the derivative of q with respect to z and evaluate it at the bottom to get an 
analytical expression for a bottom stress. The bottom stress can then be substituted into a set of depth- 
averaged equations to numerically solve for q and the depth-averaged velocity components, U and V. 
The other way is to integrate q over the water column to get a transport. The transport can then be 

Table I. This table summarizes Welander’s two suggestions qd(f z; I,) and q,(t, z; Ivy) are two flows induced by 
unit constant wind stress I, and unit sea surface slope Ivy. A unit vector here is defined as a vector whose length is 

one unit and whose angle is zero. The dots on qa and q d  indicate the time derivatives on them 

Jelesnianski’s 
bottom stress approach 

1 1 
1 2 

V9 Welander’s + 
first suggestion (1) 

(r:? $) 
+ {(7$ z;) =vg * +7 * 

r = - h  z =  -h 

aii ahii ahs -+-+-=o 
at a x  ar, 
aii 
at ax h 

- + f i i  = -g - + - 
at a y h  

- - f V = - g - + U  ag TS - 7b 

aij aq 7; - 7; 

This study’s 
transport approach 

Welander’s 
second suggestion (2) 
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substituted into the continuity equation to numerically solve for q. Both are variations of the 
convolution method. The difference between the two approaches lies in the way they supply the local 
forcing Vv(t) for the convolution. 

Welander' was interested in implementing the convolution method with the transport approach and 
planned to perform some numerical experiments for the North Sea. By 1961, however, he 
acknowledged a difficulty of the implementation because of the complexity of the integrodifferential 
equation.* The difficulty was also recognized by  other^.^-^ 

Jelesnianski6 implemented the convolution method with the bottom stress approach and developed a 
model for storm surge prediction. F~mstall'-~ applied Jelesnianski's method to model storm-generated 
currents and later extended the method to the case of two layers of different but constant eddy 
viscosity. Davies"?' ' pushed this method one step further to the case of a non-linear depth-averaged 
model, using the bottom stress derived from a linear depth-dependent model to provide closure for the 
non-linear depth-averaged model. A difficulty with the bottom stress approach is the extremely slow 
convergence of the bottom stress series. Therefore approximate formulae have been used to replace the 
bottom stress series in this Such approximations, owing to the underestimation of the 
correct bottom stress, tend to produce the undamped inertial oscillations reported by Davies" and 
Heam and Hunter.12 

This study implements Welander's outstanding idea, resulting in a new method for numerical 
integration of the system (1). The new method features separation of the calculation for the surface 
elevation from that for the velocity. The separation results in a significant reduction of the 
computational workload owing to two factors. First, in calculating the elevation, only the transport 
series is involved, which requires fewer modes for its summing up than do the velocity series and the 
bottom stress series. Second, in calculating the velocity, both the wind-induced surface Ekman spiral 
and the slope-induced bottom Ekman spiral are extracted from the velocity series so that the remainder 
series converges exponentially. Section 4 will elaborate on these points. 

Sheng and Th~mpson '~  propose a modification to Heaps' spectral method to accelerate the 
convergence of the velocity series. In their method the wind-induced surface Ekman spiral is extracted 
but the slope-induced bottom Ekman spiral is left in the series. It has become a topic of recent research 
interest to seek a better form for the prescribed part of the velocity so that the remainder converges 
faster.'"'' Although the primary purpose of this paper is to implement Welander's idea, a section of 
this paper (Section 5) is therefore devoted to a discussion on this topic. 

Owing to the inherent assumptions concerning the linearity of the system in question, the method is 
not extendable to fully non-linear problems. However, one may use perturbation techniques to extend 
the method to weakly non-linear problems in principle. In geophysical fluid problems with scales of 
100-1000 km the Rossby number (an indication of the non-linearity; see e.g. Reference 19) is often 
small. As such, a linear system such as (1) can be a powerful model for many practical problems. This 
paper offers a new method for numerical integration of the system. The method cuts the computational 
workload substantially. This can be very valuable in problems requiring repeated integration of the 
system, such as data assimilation. 

2. THE TRANSPORT APPROACH 

This section gives a complete description of the transport approach for the case of constant density and 
constant eddy viscosity using either slip or non-slip bottom boundary conditions. Appendix I1 will 
discuss how to extend the method to the case of arbitrary but time-independent vertical profiles of eddy 
viscosity and density. 
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2.1. Extraction of Ekman dynamics 

By Ekman dynamics we refer to the response of a local water column (in a Eulerian sense) to the wind 
stress applied at the surface and to the pressure gradient force exerted along the verticla sides. Under 
the assumptions of linearity, hydrostaticity, constant density and eddy viscosity and Coriolis parameter 
the response is governed by the two sets of equations 

and 

4slt=0= 0, 

where qd is a complex drift current induced by the wind, qs is a complex slope current induced by the 
sea surface slope and k is a constant coefficient. An infinite k corresponds to the non-slip bottom 
condition. 

Our task is to find solutions to these equations, which can be done in two different ways. One is to 
solve the equations numerically given the values of z( t )  and Vq(t )  at each new time step. This is 
essentially the philosophy behind Lardner’s VHS (vertical and horizontal split) method.20*21 
Alternatively, it is well known that for a linear system, it we know its response to unit constant 
force, we can know its reponse to any force. This paper uses the second approach. 

By replacing the two arbitrary forces z( t )  and VV(t) in (3) and (4) by two special forces-a constant 
unit wind stress I,, and a constant unit sea surface slope I,--one can easily find the two solutions 

where 

sinh[a(h + z)] + (aolk)  cosh[a(h + z)] 
cosh(ah) + ( a o / k )  sinh(ah) SE(Z) = d3 e-in/4 (surface Ekman spiral), (7) 

cosh(cu) 
cosh(cth) + (ao /k )  sinh(ah) 

BE(z) = 1 - (bottom Ekman spiral), 

6, = /@ (Ekman depth), (9) 
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The w, are the roots of 

he 4 
a,, = - 

[(w,,h)2(h,/h)2+2i] (1 + E n )  ' 

4 sin(w,,h) 
c,, = i 

w,h [ (~ , , h )~ (d , /h )~+2 i ]  (1 + E,) 

k 
w,, tan(w,h) = -, 

0 

which must fall in the range 

nn 5 w,,h 5 (n + 4)n. 

In addition, a parameter 

sin( 20, h) 
2w,h E,, = when k --+ 00, E, -, 0, 

has been introduced to reflect the slipping of each modal motion at the bottom. 
In the above the notation qd(t, z; IT) has been designed to represent the characteristic response of 

the drift current to the unit wind force I,. Similarly q,(t, z: ZJ means the characteristic response 
of the slope current to the unit slope force I,,. The two-letter variables SE and BE have been used to 
represent the wind-induced surface Ekman spiral and the slope-induced bottom Ekman spiral 
respectively. 

Having determined the characteristic responses, we can obtain the response of the velocities to 
arbitrary forcing by performing a convolution in time: 

where the dots denote the time derivatives. 
The Ekman dynamics has now been fully extracted. All its features, such as top and bottom Ekman 

layers, damped inertial oscillations with higher modes dying away faster, and the momentum diffusion 
e-folding time scale ( ~ 5 : / h 2 f ) - ~  (see equation (13)), are preserved analytically. The unknown Vq(t) only 
affects the amplitude of the velocity profile (in a time convolution fashion). 



368 z. xu 

As a consequence of the initial conditions in (3) and (4), we have 

00 

c, COS(W,Z) = BE(z), (20) 
n = O  

obtained by setting t = 0 in (5) and (6). In fact a, and c, given by (12) and (14) were calculated from 
these two relationships. Appendix I will use these two relations to accelerate the convergence of the 
velocity series. 

2.2. Characteristic responses in terms of transports 

Defining 

as the two characteristic transport responses induced by wind and sea surface slope respectively, 
substitution of (5) and (6) into the above yields 

where 

1 
cosh(ah) + (sulk) sinh(ah) ’ D d = 1 -  

The coefficients -iI,lfand ighI,lfon the RHS of (22) and (23) are the transport amplitudes, whose 
physical interpretations are the familiar steady Ekman transport and the geotrophic transport in deep 
water respectively. The quantities in parentheses are the corrections for the effects of bottom friction 
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and inertial acceleration. Again, as a result of the initial conditions in (3 )  and (4), there are two 
relationships: 

m 

En = D d ,  
n = O  

Gn = 0,. 
n = O  

These two relations will be used later to determine a proper mode number when a tolerance for 
truncation errors is given. 

When the characteristics responses are known, the responses to arbitrary forcing can be calculated 
by 

Q = Vtl(t) * Qs(t;  1,) + ~ ( t )  * Q d ( t ;  A ) .  (30)  

2.3. The diference form of the continuity equation and an rp-Q lattice 

The continuity equation can be written in the form 

a? - + W { V * Q }  = 0, 
at 

where 

and 9 denotes the real part. Q and q are coupled through the sea surface slope. We need to integrate 
the continuity equation (3 1) numerically and evaluate the transport (30) numerically step-by-step in 
time. Let us first discretize the continuity equation. The next subsection will discuss how to evaluate 
the transport given the updated value of Vq. 

In differencing the above form of the continuity equation, an q-Q grid comes naturally (Figure l), 
which is a counterpart of the Arakawa E-grid in the complex plane. Adopting the q-Q grid not only 
facilitates the calculation of Vq for each Q-point but also automatically eliminates the spurious residual 
flow that occurs when one uses the Arakawa C-gridZ2 as will be shown in Figure 6. This is because, in 
contrast with the Arakawa C-grid, in the q-Q grid there is no need to average the Coriolis force over 
four neighbouring grid points. 

Using an FTCS (forward in time and centred in space) scheme to discretize equation (3 l), one has 

where s, = Atl2hr, sy = Atl2Ay, the subscripts 1 and m denote the grid point indices and the superscript 
k denotes the kth time step. 

2.4. A recursion scheme for the time convolution 

For convenience the following notation is introduced: R(t; 1) for the response of a linear system to 
unit force and R(t; F) for the response to an arbitrary time-varying force E;: Thus R can signify velocity 
response, transport response or bottom stress response, F can represent wind stress or sea surface slope 
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Figure I .  Panel (a) is an tr-Q grid, a counterpart of the Arakawa E-grid in the complex plane, panel (b) is the C-grid used by 
Heaps24 and panel (c) is the q-Q grid used in this model. Originally Heaps divided the basin horizontal plane into 35 x 19 lines 
(full lines in panel (b)) and marked four grid points for recording the model output. In the comparison tests Ays for both methods 
have been changed. One-half and one-third of Heaps’ original Ay are used for the present method and Heaps’ method 
respectively. By doing this, we can make the two methods have the same geomety co-ordinates for the four marked points while 

not letting Heaps method use the coarser grid size than the present one 

and the recursion scheme to be derived will be suitable for any of these cases. The relationship between 
R(t; F) and R(t; 1) is given by 

Numerical evaluation of this integral is necessary, since F(t) is an arbitrary time function. Because t 
appears in both the integral limit and the integrand, the usual discrete summation for the integral would 
require recalculation of the summation from t = 0 for each time step. An economic evaluation scheme 
is thus needed and Jelesnianski6 has provided one. However, both his derivation and his recursion 
scheme are complicated. This subsection gives a simple derivation for a simpler and physically clearer 
recursion scheme. 

The structure of the solutions presented in (S), (6),  (22) and (23) suggests that it is proper to write 
R(t; 1) in the unified form 

M 
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to be zero (see (19), (20), (28) and (29)), we have 

n = O  

(except at z = 0 when R(t; 1)  represents the stress). Substitution of (35) into (34) gives 

f l = O  

where 

rn(t; F )  = F(t')4,(z)bfl e-bn(r-') dt', 6 
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(36) 

which denotes the response to an external force by the nth mode. For the next time step t + At we have 
m 

R(t  + A t ;  F )  = (6 + /:id')F(t') &(z)bfl e-bn(t+At-') dt' 
n = O  

m 
= [rn(t; F )  e-bnAt + F ( t ) 4 , ( z ) ( l  - eCbnA'>], 

n = O  
(39) 

where in the first integral the result calculated at the previous time step has been used and in the second 
integral F(t') has been approximated by F(t) for t' E [t, t + At]. Let us denote 

m ( t  + At; F )  = rn(t; F )  epbnAt + F(t)r,(At; I ) ,  (40) 
where 

rn(At; 1) = +,(z)(l - ePbnAf), 

which gives the response by the nth mode to a unit force in one time step. Then (39) can be written as 
m 

R ( t  + At; F )  = c rn(t + At; F ) .  
f l = O  

Thus a recursion scheme for evaluating the response convolution is obtained. Starting from 
r(0; F) = 0 (be definition of (38)), one can use (40) to evaluate the response to an external force by 
each mode for successive time steps and then use (42) to obtain the total response. The scheme is 
summarized in the following box: 
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where the notation r$ is short for r,(kAt; F), r::) for r,,(At; l), etc., and N is a positive integer whose 
proper value will be discussed later. 

A physical interpretation of the recursion scheme is as follows. The first term on the RHS of (40) (or 
the third equation of (43)) is due to the ‘initial’ condition at the previous time step and the second term 
is due to the latest ‘kick’ by the external force. r::) acts as a weight to partition the external force F into 
the nth modal motion. Since the frictional force has been taken care of in r::), one may read as 
a net force to drive the nth modal motion during the time interval [kAt, (k + l)At]. The factor e-bn At 

describes how each mode evolves once set into motion. Different modes evolve differently because of 
the different values of b, (n = 0, 1,  2, . . .). 

The above recursion scheme can be applied to the response in velocity, stress and transport when 
one substitutes the corresponding C(z), +n(z) and b,. In terms of velocity the recursion scheme is 
expressed in Appendix I, where a discussion is also given on velocity convergence acceleration using 
relations (1 9) and (20). In terms of transport the recursion scheme is expressed as 

where Q takes the place of RF, and En and G, are as given by (26) and (27) respectively. In 
programming (44), one should evaluate those k-independent quantities once before the updating ‘do- 
loop’. Also, one can replace the symbols of unit wind stress I,  and unit slope I,, in the programme by 
the number ‘ 1 ’ so that the inputs T and Vq can automatically take care of the units and directions. 

Now the formula for updating Q has been obtained, equations (33) and (44) form an explicit scheme 
for updating Q and r]  alternately. In various cases (different values of dJh, flat or varying bottom topo- 
graphy, steady or unsteady wind, etc.) the numerical experimentation shows that the scheme is stable 
under the CFL condition At 5 AxAy/,f[gh(A$ +A?)] (the scheme is still stable even when the 
equal sign in the condition is taken). However, a theoretical stability analysis for the scheme is not 
available yet. 

2.5. Transfer of the zero-flux boundary condition to that for the surface elevation 

For an open lateral boundary condition one may use the Sommerfeld radiation condition to update r]  

and Q based on information at neighbouring interior points at the previous time step (see e.g. 
Reference 23). For a solid lateral boundary the Q-q lattice introduced above requires that one 
calculates the surface gradient for Q-boundary points based on the fact that the flux normal to the wall 
is zero. Here let us focus on the transfer of the zero-flux condition to that for the surface gradient. 

According to (44), Qkc1) can also be written as 
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where 

n = O  

N 

R!; = C r::',. 
n = O  

Letting 

Ri; = a + ib, 

where a and b are both real, then 

Thus from (45), on a lateral boundary where U = B{ Q} should be zero, 

and on a lateral boundary where V= 9{ Q} should vanish, 

where 9 denotes the imaginary part of a complex quantity. In a corner where both U and V vanish, 

where {. . .} is the same as that of (SO) and (51). 

2.6. How large must N be? 

Let us come back to the expressions for the transports given in (22) and (23) to see how large a value 
of N is sufficient given a truncated error tolerance. Rewrite (22) and (23), with reference (28) and (29), 
in the form 
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where for brevity the notation Zed and Io, has been introduced to represent the transport amplitudes 
-iIT/f and ighI,/f respectively. Truncation errors per Zed and per I Q ~  may then be defined as 

n = N + l  n = N + i  

where b, is as defined in (1 3). In the above definition the terms e-bJE, and e-bntCn have been dropped, 
because C,"= + ePbnfE, and zr= + I eWbntGn approach zero much faster than do z,"= + I En and x,"= + I Gn respectively, so we need only consider the slowly convergent component to evaluate the 
truncation errors. Substitution of (26) and (27) into (55) and (56) yields 

4i sin(w,h) 
er2 = 2 (58) 

N + 1  (wnh)* [(wnh)2(~e/h)2+2i] (1 + E n )  ' 

where nn 5 w,h I (n + +)z (from (16)). From the above we see that the coefficients of the two error 
series decrease towards zero in orders of lln3 and lln4 (n 2 N +  1) respectively. The first error 
corresponds to the wind-induced flow and the second to the sea-surface-slope-induced flow. For 
problems concerning purely slope-induced flow (such as tidal currents), N will be smaller for a given 
truncation error than for problems which include wind forcing. We also see that both truncation errors 
are inversely proportional to (&/A)*. Thus we expect that N will be smaller in relatively shallow water 
(larger 6,lh) than in deep water (smaller 6Jh). This is because in shallow water the momentum versus 
depth distribution is more uniform owing to the stronger frictional effects, so fewer modes are needed 
to sum up the distribution. 

The absolute values of the errors can also be calculated. Because of (28) and (29), we have from (55) 
and (56) that 

I 

I N I  

with which one can quickly decide on a proper value of N for a given truncation error tolerance. For 
the case of a non-slip bottom condition (k = 00) the absolute errors are tabulated in Table I1 and I11 as a 
function of N for different values of 6Jh. These tables help to determine a proper mode number for a 
given error tolerance. 

A complete description of the transport method for the case of constant eddy viscosity and constant 
density is now finished. A discussion on the extension of the method to the case of arbitrary depth- 
dependent eddy viscosity u = u(z) and arbitrary density profile p = p(x, y, z) is presented in 
Appendix 11. 
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Table 11. Truncated error per I Q ~  (=Z& where I ,  is one unit of kinematic wind stress) when t = 0 for different 
values of 6Jh  and N. The truncated error is defined as EN = xF+ 

N 
6Jh = 1 
I& ’ (  i 
0.03 19 
0.0062 
0.0021 
0-0009 
0.0005 
0*0003 
0-0002 
0.000 1 

6Jh  = 112 
I E ’ I  I 

0.1200 
0.0245 
0.0083 
0.0037 
0~0020 
0.001 1 
0-0007 
0-0005 

N 

0.2734 
0.1495 
0.0955 
0.0614 
0.0392 
0.0254 
0.01 70 
0.01 18 

8 
9 

10 
11 
12 
13 
14 
15 

6Jh  = 1 
I E l I  5 

0.0001 
0.0001 
0~0000 
o*oooo 
0~0000 
0.0001 
0~0000 
0~0000 

6 J h  = 112 
( & ‘ I  = 

0*0003 
0.0003 
0~0002 
0~0001 
0.0001 
0.0001 
0~0001 
0.0001 

6Jh  = 1/10 
I& ’ \  = 

0.0084 
0.0062 
0.0047 
0-0037 
0.0029 
0.0023 
0.0019 
0*0016 

Table 111. Truncated error per IQ. (=ighl,,lf, where I,, is one unit of sea surface slope) when t = 0 for different 
values of 6Jh and N. The truncated error is defined as cN=Cg+ 

6Jh = 1 dJh = 112 6Jh  = 1/10 6Jh = 1 6Jh  = 112 6Jh  = 1/10 
N I E” I I I E” I = I Ell I I N I En I = I &‘)I I I &“I  I 
0 0.0096 
1 0.0015 
2 0.0005 
3 0.0002 
4 0.000 1 
5 0.0001 
6 0~0000 
7 o*oooo 

0.0365 
0*0061 
0.0019 
0.0008 
0.0004 
0-0003 
0.0002 
0~0001 

0.1452 
0-0589 
0.0297 
0.0163 
0.0095 
0.0058 
0.0038 
0.0026 

8 
9 

10 
11 
12 
13 
14 
15 

0*0001 
0*0001 
o*oooo 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 

0.0018 
0.001 3 
0*0010 
0.0008 
0-0006 
0-0005 
0.0004 
0.0003 

3. TEST OF THE TRANSPORT METHOD IN HEAPS’ BASIN 

In this section the method described in the previous section is tested with some standard known results. 
Heaps’24 rectangular basin with constant wind blowing and Heaps’ spectral method are chosen for 
comparison. It is due to Heaps’ pioneering work that the spectral method was introduced into 
oceanography to simulate 3D flows. The results fiom Heaps’ work have been taken as a standard for 
comparison by most of the later spectral models (see e.g. References 1 1 ,  14, 15, 20, 25 and 26). 

Heaps’24 rectangular basin is 800 km long (north-south) and 400 km wide (east-west) (the basin 
geometry was chosen to mimic the North Sea). Heaps used the C-grid scheme to locate q- u- and v- 
points in a horizontal plane grid of 35 x 19 lines (Figure l(b), full line), using 

AX = 40019 km, Ay = 800117 km, (61) 

and marked four q-points A, B, C and D for which the time series of the surface elevation and 
velocities (averaged over the four neighbouring points) are recorded. Since the q-Q grid scheme is 
used in the transport method, in order to locate the four q-points A, B, C and D in the grid plane with 
the same geometry as that of Heaps, a grid of 69 x 19 lines (Figure l(b)) is placed on the horizontal 
plane for the transport method. In doing so, however, Heaps’ method has to use a coarser grid size than 
the transport method. To avoid this, one-third of Heaps’s original Ay is used as a new grid size for 
Heaps’ method (Figure l(b), broken line) in the tests. 



376 z. xu 
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q at point B the difference between the methods 
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a0 

z Oy” &.12 - 10 

-10 091 - 10 

-20 
-30 - 

0 
-40 l b  ;o ;o 40 rjlo $0 ;o i30 do 100 

Hours 
Figure 2. Time senes of the surface elevation at point B for the first group of tests. Three elevation curves for different values of u 
are generated by the transport method (using two modes) and compared with the same type of curves generated by Heaps’ 
spectral method (using 10 modes). The differences behwen the two methods are shown by 6171,6112 and 6113 (6111 = I q~ - q ~ l ,  
where qT is generated by the transport method and q H  by Heaps’ method for u = 650 cm2 s-’, and so on; for clarity they are 
offset by - 10 in the figure). The figure demonstrates that the transport method yields results in good agreement with Heaps’ 
results (Parameters: f =  1.22 x s-’, g = 9.81 m s-’, z = -1.5 Pa, p = 1.025 kg K3, At = 6 min, h = 65 m, 
k = 0.002 m s-’, u = 0.065, 0.13, 0.26 m2 s-I (6Jh = 0.50, 0.71, 1.00), Ax = 44.44 km, Ay = 23.52 km for the transport 

method and Ay = 15.69 km for the spectral method.) 

Table I\! Illustration of the main idea of the transport approach 

1 vv Velocity profile recovery 
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Figure 3. Velocity time series at four depths generated by the transport method (using two modes) and their difference from those 
generated by Heaps' method (using 10 modes). The differences are represented by 6u, and 6vi (i = 1 ,  2, 3, 4 for z/h = 0, -0.25, 
-0.5, - 1) which are offset at different horizontal lines. The small difference shows that the transport method yields satisfactory 

results compared with Heaps' results (the parameters are the same as those in Figure 2 except for u = 0.065 m2 s-' only) 

Shown in Figure 2 are the three surface elevation time series at point B generated by the transport 
method using two modes. They are compared with those generated by Heaps'spectral method with 10 
modes. (For Heaps' spectral model the 'wet point only' technique22 has been used to avoid a spurious 
residual flow.) The difference between the two methods is represented by 6vi (i = 1, 2, 3 for three 
values of o; 6qi = [qT - q ~ l ~ ,  where  IT represents q generated by the transport method and q~ by 
Heaps' spectral method). The figure demonstrates that the transport method works well and gives 
results that are very close to Heaps' results. 

When the surface elevation field is obtained, the major part of the computation is finished. The 
velocity profiles at grid points of interest can be recovered using the record of V q  at those points (Table 
(IV). Figure 3 shows velocities (using two modes) recovered at grid point C. The differences between 
the results of this method and Heaps' spectral method (using 10 modes) are represented by 
6ui (i = 1, 2, 3, 4 for zlh = 0, -0.25, -0.50, -1; 6u = UH - uT, where U H  denotes u generated by 
Heaps' method and uT by the transport method) and 6vi (for clarity they are offset at different 
horizontal lines in the figure). The figure shows that the results yielded by the transport method are in 
satisfactory agreement with those by Heaps' method. 
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-20 

From the point of view of computational efficiency, the advantage of the transport method over 
Heaps’ spectral method is clear: the transport method uses two modes while the spectral method uses 
10 modes. This advantage will become more prominent when 6Jh  becomes smaller. Figures 4 and 5 
compare the numbers of modes used by the transport method, Heaps’ spectral method and a variation 
of Heaps’ method14 for 6,lh = 0.21. The figures illustrate that Heaps’ spectral method converges 
slowly both at the surface and at the bottom. Sheng and Thompson’s methodI4 effectively improves 
convergence at the surface but not at the bottom, while the transport method improves convergence at 
both the surface and the bottom. This is because the transport method extracts both the wind-induced 
surface Ekman spiral SE(z) and the slope-induced bottom Ekman spiral BE(z) from the series and so 
the remainder series converges exponentially (see the discussion in Appendix I and equation (83)). 
Heaps’ method does not extract the Ekman spirals (however, he suggested a velocity correction to 
approximate the infinite summation, which is used in the tests here), which explains the slow 
convergence near the surface and bottom. Sheng and Thompson’s method extracts only the wind- 
induced surface Ekman spiral; the slope-induced bottom Ekman spiral is left in the series. Therefore 

- Sheng &Thompson 

-20 - Transport method 
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Figure 5. Comparison of the convergence rates at the bottom (zlh = - 1 )  for the three methods in the Heaps basin (Except for 
h = 100 m, u = 0.026 m2 s-' and k = 0.004 m s-' (6Jh = 0.21) the parameters are the same as those in Figure 2.) 

their method still converges slowly near the bottom. A more theoretical comparison of the transport 
method with the others will be presented in the next section. 

For Heaps' rectangular basin problem an analytical solution for q and q(z) in the steady state can be 
found. The transport should be zero everywhere in the steady state because of the flat bottom and the 
uniform wind field. Thus from (22) and (23) one can deduce a relationship between the ultimate sea 
surface slope and the wind stress, namely 

which is a constant over the entire basin. Thus the ultimate sea surface is a plane and can be described 
bY 
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Figure 6. The top panel shows the vanishing depth-averaged velocity. The middle and bottom panels are a comparison between 
the theoretical steady state (represented by broken lines) and the model output at 300 h after the constant wind is set up over the 
Heaps basin. Two modes are used both in updating 1 and Q in the main do-loop and in recovering the velocity profile afterwards. 
This figure also shows that in the transport method there is no problem of undamped inertial oscillation or spurious residual flow 

in which the constant c can be determined by the fact that the surface at the middle point of the basin 
should be zero owing to the conservation of water mass and the symmetry in the basin geometry. For 
example, if the origin of the co-ordinate is at the centre of the basin, then c = 0. The ultimate velocity 
profile can be calculated by 

Jamart and Oze?* obtained the steady solutions only up to the knowledge of the sea surface slope 
and the velocity profiles. Here the use of the simple fact that the sea surface plane should go through 
the zero point at the centre of the basin completely determines the whole steady solution. Equations 
(62H64) are useful in the sense that every new algorithm proposed for spectral methods is first tested 
in Heaps' basin. 
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Figure 6 shows a comparison between the theoretical steady state (represented by broken lines) and 
the model output of 300 h after the constant wind is set up (represented by full lines). As one can see, 
the agreement between the theoretical prediction and the model calculation is satisfactory. The top 
panel of the figure is the time series of the depth-averaged velocity, showing that there are no 
undamped inertial oscillations’0”3 with the transport approach. The bottom panel also shows that 
adopting the q-Q grid (a counterpart of the Arakawa E-grid in the complex plane) automatically 
eliminates the spurious residual flow problem.22 

4. A COMPARISON OF THE TRANSPORT APPROACH, THE BOTTOM STRESS APPROACH 
AND THE SPECTRAL METHOD 

To solve the linearized equations of motion (as given by (l)), we have three closely related methods at 
our disposal: the spectral method as well as two approaches based on the convolution method, namely 
the bottom stress approach and the transport approach. These focus on three related but different 
expansions. The spectral method employs a velocity expansion of the form 

q - CA, COS(O,Z), (65) 

in which the A, are updated at each time step by solving a set of modal equations. In this sense the 
spectral method may also be classified as a velocity approach. The bottom stress approach employs a 
bottom stress expansion which is a vertical derivative of (65). The transport approach employs a 
transport series which is a vertical integral of (65). Thus the three approaches are relevant in the sense 
that they all deal with the same family of series, but different in the sense that they pick different family 
members, as summarized in Table V; 

When comparing the convergence rates of two trigonometric series, it is the usual practice to 
compare the rates at which their coefficients approach zero (see e.g. Reference 27, pp. 14&145; in the 
following discussion, terms such as ‘rate’, ‘speed’, ‘fast’ and ‘slow’ are to be understood in this sense). 
Now suppose that 

- An = constant as n -+ 00, 

n -p 

which means that A, and I /#  are of the same order, wherep is a positive number. From (12), (14) and 
(1 6) one can deduce immediately that p = 2 when wind is present and p = 3 when only sea surface 

Table V Relevance and difference of the three approaches (for the format of the series listed for the velocity 
recovery see (83) and for a, and c, see (12) and (14)) 

Transport Velocity Bottom stress 
approach approach approach 

(this study) (Heapsz4) (Jelesnianski6) 

Series involved - A,  cos(w, z)  (velocity) 

A n  . 
Wn 

in the main 
do-loop Z -sin(w,h) 

Series involved 
in the velocity Z(u,, c,) e T b n  At cos(w, z) - Z(u,, c,) e P b n  cos(w. z) recovery 
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Figure 7. This diagram illustrates why the transport series converges most quickly. The net transport due to each mode is 
represented by the shaded area and the bottom stress by the broken line. The transport in this example is mainly due to the first 
and second modes; higher modes contribute little to the transport but may significantly contribute to the velocity and even more 
to the bottom stress (The curves shown here are for the velocities of each mode based on the second part of qd when f = 0, 

6Jb = and k =  m.) 

slope forcing is present. Then, because o , h  - n, we have 

Anlwnh = constant as n + 00 n - @ +  1) 

for the transport series 

for the bottom stress series. Thus the coefficients of the transport series decrease one order faster than 
those of the velocity series and two orders faster than those of the stress series. Figure 7 illustrates this 
graphically. 

From Table V we can see that the transport approach decouples quickly convergent series from the 
slower series, while the other approaches couple two series. When a calculation process involves the 
summation of two series simultaneously, the convergence rate is controlled by the slowly convergent 
series, i.e. in the velocity approach and stress approach the calculation for the elevation is slowed down 
by the calculation of the velocity and bottom stress respectively. The transport method has no such 
problem and can let the calculation for the elevation proceed at its own speed. After the elevation 
calculation is completed, the transport approach employs the analytical formula (1 8) to recover the 
velocity. The main advantage in using the analytical formula is that the formula extracts both the wind- 
induced surface Ekman spiral and the slope-induced bottom Ekman spiral so that the remainder can 
converge exponentially (see (5 ) ,  (6),  (83) and Table IV). 

There are two additional advantages in using the analytical formula. First, one can use a different 
time step from that used in the main do-loop. For an explicit scheme the time step in the main do-loop, 
say AtM, is restricted by the CFL condition and can be very small when the water is very deep. In this 
case one might consider using a multiple of A t M  as the time step for the velocity calculation. Figure 8 
shows the effects on the velocity recovery of using a different time step as well as a different number of 
modes. Second, there are many practical cases which only require that the velocity profile be calculated 
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Figure 8. Since the transport method separates the calculation for the transport and elevation from that for the velocity, it is 
permissible to use a different number of modes and a different time step in the velocity recovery. This can be an advantage in 
reducing the computational workload in some cases. This figure shows the effects of using a different number of modes and a 
different time step (Note that because of the factor e& At (b, - n2), the value of Nis also affected by the choice of At. In a slow- 
varying problem a large value of At can be chosen and the value of N can be reduced accordingly given a fixed truncation error. 
In a fast-changing problem a small value should be chosen for At and thus the value of N should be increased. The transport 

method is flexible enough to accommodate these needs.) 

at a few grid points rather than at every grid point. The transport approach allows one to calculate the 
velocity profiles at only the points of interest. In contrast, the velocity approach (spectral method) 
requires calculation of the velocity profiles at every grid point whether they are needed or not. Any one 
of these three advantages results in a great saving of computational workload, while their combination 
saves even more. The bottom stress shares the same advantages in the velocity recovery, but it needs 
the greatest number of modes in the main do-loop since it employs the slowest series. 

Another feature of the transport approach is that it solves only one equation numerically (the 
continuity equation) rather than three. Thus the numerical task is made easier. Lynch and Weme?*, 
and Lynch et al.29 proposed a method for solving the 3D linearized equations of motion which 
essentially also solves a single Helmholtz-like equation for 9. However, an arbitrary time dependence 
motion is replaced by a single harmonic motion in their work. In this work there is no restriction on the 
time dependence of the motion; the forcing function can be arbitrary. 

5. COMMENTS ON THE VELOCITY-SPLIT FORM IN THE SPECTRAL METHOD 

The purpose of this study is to implement Welander’s transport approach. However, one point warrants 
fkrther discussion, which is closely related to the recent efforts to improve the convergence of the 
spectral method for the velocity profile. It was found that Heaps’ classical spectral method converges 
too slowly (see e.g. Reference 15 and 26) near the surface when there is non-zero wind stress on the 
surface. Recent efforts to accelerate the convergence have split the velocity into two parts-a 
prescribed component and a remainder series-whose coefficients need to be updated by numerically 
solving a set of modal equations 

q = Q(z)  + A ,  COS(W,Z). (69) 
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The convergence rate of the remainder series depends strongly on the choice of form for Y(z). Various 
authors14-' * have proposed different forms of Y (z). 

A general format for all the previously proposed forms can be written as 

@(z) = Fs@s(z) f Fb@b(Z) ,  (70) 

where Y s  and Yb are two prescribed profiles and F, and Fb are two depth-independent quantities, 
usually related to the surface stress and bottom stress respectively. 

An alternative expression for (18) is 

This form suggests that a more suitable form for Y(z) is 

where SE(z) and BE(z) are as given by (7) and (8) respectively or can be numerically obtained for an 
arbitrary eddy viscosity u(z). In a system such as Heaps' basin, which permits a steady state eventually, 
this form is optimal; when f is sufficiently large, any other form of Y(z) will cause the remainder series 
to contain a non-vanishing part, i.e. 

In other words, the difference between (70) and (72) is buried in the remainder series. Given a 
truncation error tolerance, one needs to sum a certain number of modes to get this buried part no matter 
how much time passes. If one chooses (72) for Y(z), then one will not need any mode to sum when t is 
sufficiently large. 

For time-dependent states, since the external forces z(t) and Vq(t) can be arbitrary functions of time, 
let us turn to considering single-frequency forcing. Conclusions from the single-frequency study 
should be illuminating for arbitrary forcing, since the latter can be decomposed into different frequency 
modes. Thus assume harmonic time dependences, 

z ( t )  = ze'"', (74) 

Vq(t) = Vqe'", (75) 

after which combination of (71) and (69) gives 



TRANSPORT APPROACH TO THE CONVOLUTION METHOD 385 

This equation provides a means for theoretical assessment of all the previously proposed forms under 
the basis functions {cos(w,z)} which are the eigenfunctions of problems (3) and (4). If one choses (72) 
for Y(z), one will find (with reference to (12H16)) that the coefficient of the remainder series is 
described by 

(in which the first and third terms are related to the wind forcing and the second and fourth terms to the 
pressure gradient forcing). When t > 0, the last two terms in parentheses approach zero exponentially 
as n 4 co, leaving the first term (or the second term when z( t )  = 0) as the controlling term. 
Substituting all the previously proposed in (76) reveals that 

1 
n3 

A n w - .  

Thus the form (72) is preferable to the others as a prescribed part of the velocity under the basis of the 
eigenfunctions of problems (3) and (4). (For other basis functions, e.g. {cos[(ndh)z]}, which are not 
the eigenfunctions of problems (3) and (4) when k # 0, whether this preference still holds needs 
further investigation.) The form of (72) requires calculation of Vq at each velocity grid point. It will be 
difficult to perform this calculation with the Arakawa C-grid but will be easy with the Arakawa E-grid. 
The numerical experiment of this study adopts the E-grid. The E-grid not only brings this study good 
agreement with the results from using the C-grid but also automatically eliminates the spurious 
residual flow problem. 

6 .  CONCLUSIONS 

Regarding the pressure gradient force in the two linearized momentum equations as a local external 
force, one can easily obtain two characteristic responses of the local Eulerian velocity. These 
characteristic responses can be analytically expressed in terms of unit constant wind stress and unit 
constant pressure gradient. The coefficients in the expression, however, may either have an analytical 
relationship with the mode number n and the system parameters (6Jh, k) or only have numerical 
values, depending on the arbitrariness of the eddy viscosity profile u(z) and the density profile p(z). 
The response to the arbitrary wind and pressure forcing can be obtained by convolving these two 
forces with the time derivatives of the two characteristic responses. Thus a full velocity profile 
q(t, z; V q ,  z) is analytically extracted. Our knowledge of the system would be complete if q(t, x ,  y) 
(hence Vq(t, x,  y)) were known. Thus the key point becomes how to find the solution for q(t, x ,  y). 
To get ~ ( t ,  x ,  y), the transport method numerically solves the continuity equation (where the transport 
is supplied by the depth integration of the velocity profile) instead of solving a set of depth-averaged 
equations of motion. By doing so, the numerical task is reduced, since only one equation needs to 
be finitely differenced and integrated, and more importantly the convergence rate is enhanced, 
since high modes do not contribute to the transport as significantly as they do to the velocity or the 
bottom stress. 
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APPENDIX I: VELOCITY RECURSION SCHEME AND ACCELERATION OF VELOCITY 
CONVERGENCE USING EQUATIONS (19) AND (20) 

The recursion scheme (43) can apply to the response in velocity, stress and transport when one 
substitutes the corresponding C(z), &(z) and b,. In terms of velocity the recursion scheme is expressed 
as 

where q takes the place of RF in (43) and a, and b, are as given by (1 2) and (1 3). 
As we can see from the above, in the summation of the series 

the convergence rate is controlled by the series 

n = O  n = O  

rather than 

The latter converges much faster than the former, since the factor A,, decreases exponentially as n 
increases. We obviously want to take advantage of this fact. This can be achieved by using the 
relationship of (1 9) and (20) to extract the slowly converging parts from the summations. Thus we can 
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derive the following quickly convergent scheme for the velocity recovery: 

1 - -bnAt , - e  , 

It 
- a,, cos(w,z)(l - A,), 

rnF = 0, 

rfl'T = f d e  

r,l, = i gr, - c, cos(o,z)(l - A,), 
f 

APPENDIX 11: EXTENSION OF THE APPROACH 

The two characteristic velocity responses are obtained under the assumption of constant eddy viscosity 
and constant density. In this appendix we discuss the extension of the transport approach to the cases of 
arbitrary but time-invariant eddy viscosity u(z) and density anomaly p = po[l + E(X,  y, z)]. 

AII. I The case of arbitrary depth-dependent v(z)  

When u = ~ ( z ) ,  the formal solution (e.g. equation (5) or (6)) for the characteristic velocity repsonse 
still holds: 

00 

q(t ,  z;  I) = C(z) - A,e-(B:+i)fZ,(z), (84) 
f l = O  

where C(z) is a steady current (wind-induced or slope-induced), Z, and P,, are eigenfunctions and 
eigenvalues values defined by 

and A ,  are Fourier coefficients with the respect to the eigenfunctions. The steady velocity C(z) should 
be easy to obtain by numerical integration. If the eigenfimctions and eigenvalues are known, then the 
Fourier coefficients A,, can be obtained by numerical evaluation of 
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where 1 1  . )I denotes the norm of Zn, and (84) can be evaluated and the characteristic responses in 
velocity determined. Therefore the crux here is how to solve the Sturm-Liouville eigenvalue problem 
given by (85) and (86). When u(z) is of some proper form, such as a linear function, exponential, 
power, etc., there exist various analytical solutions30 to (85) and (86). What is needed here is a 
numerical solution of the eigenvalue problem where u(z) does not admit an analytical solution. 

Davies solved the eigCnvalue problem using a Galerkin method by expanding each of the 
eigenfunction in terms of a set of B-spline functions26 or alternatively by using the Runge-Kutta- 
Merson iteration method.31 In the following a direct way of solving the problem is presented. Without 
loss of generality let us consider the following form of the eigenfunction problem: 

(UZ/)’ = -AZ, (88) 

Z’(0) = 0, Z(-1) = 0 (89) 

which can be regarded as non-dimensional forms of (85) and (86). Dividing [-1, 01 into n - 1 equal 
parts and applying centred differences on (88) results in 

AZ = -AZ, (90) 
where 

ai = -(ui- 112 + ui+ 112) (for i = 2, . . . , n ) ,  (92) 

(93) 
T 2 = [Z, z2 . . . Zn] , 

with [Z, Z2 . . . Z,] being a set of eigenfunction values evaluated at [zl z2 z3 . . . 4. Thus the 
Sturrr-Liouville problem has been turned into a matrix eigenvalue problem. An introduction to this 
numerical method of solving Sturm-Liouville problems can be found in Reference 32. 

For illustration, a computational example is supplied in which the eddy viscosity profile is specified 
in two layers and the analytical solutions for the eigenvalues and eigenfunctions were obtained by 
Heaps.33934 Figure 9 is a comparison of the first five eigenfunctions calculated analytically and 
numerically, and the eddy viscosity profile is also shown; the numerical solution of the eigenvalue 
problem gives a satisfactory approximation to the analytical one. Also, we can see that the bottom 
logarithmic layer is well-resolved. 

A112 The case of non-uniform densityfield p=po[l + E(X,  y, z)] 

In this case there will be an extra component, say q’, compared with the case of barotropic pressure 
and constant eddy viscosity, in the characteristic velocity response contributed by the baroclinic 
pressure force, described by 

84’ $4’ - + ifq’ = -gVq,(x, y, z) + u -, 
at dZ2 (94) 
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Figure 9. The top panel is the eddy viscosity used by and the middle panel shows the first five eigenfunctions 
obtained analytically by Heaps. The bottom panel shows the first five eigenfunctions calculated numerically using the method 

described in the text 

where 
0 

)Id = dz, 

subject to the same boundary conditions as those in (4). The solution can be found from 

where 

A,  = 2 f C‘(z) COS(~,Z)  dz 
h -h 

(95) 

(97) 
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and C‘(z) is a steady solution of (94), which can be found by using, say, the Green hnction method. 
The transport approach introduced above can then be followed. 
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